Для чего нужен тайминг оперативной памяти? zhitsoboy.ru

Для чего нужен тайминг оперативной памяти?

Что такое тайминги оперативной памяти?

Здравствуйте, дорогие друзья. С вами Артём.

Что такое тайминги оперативной памяти? Вот об этом и сегодня и поговорим.

Видео версия статьи:

Тайминги, как и другая полезная информация маркируется на корпусе планки оперативной памяти.

Тайминги состоят из группы цифр.

На некоторых планках тайминги указаны полностью, а на других указывается только CL задержка.

Тайминги указаны полностью

Указание только CL, а данном случае CL9

Что такое CL тайминг вы узнаете по ходу статьи.

В этом случае полный список таймингов можно узнать на сайте производителя планки, по номеру модели.

Любая оперативная память DDR (1,2,3,4) имеет одинаковые принципы работы.

Память имеет определённую частоту работы в МГц и тайминги.

Чем тайминги меньше, тем быстрее процессор может получить доступ к ячейкам памяти на микросхемах.

Соответственно получаются меньше задержек при считывании и записи информации в оперативную память.

Наибольшее распространение получил тип памяти DDR SDRAM, который имеет ряд особенностей.

Частоты:

С контроллером памяти она (память) общается на частоте в половину меньшей, чем та, которая указана на маркировке плашки оперативной памяти.

Например, DDR3 работающая на частоте 1866 МГц в диагностических программах, например, CPU-Z будет отображена как 933 МГц.

Эффективная частота оперативной памяти

Так что на корпусе планки оперативной памяти указывается эффективная частота работы памяти, тогда как в реальности, частоты работы в два раза ниже.

Линии адреса, данных и управления передаются по одной шине в обе стороны, что и позволяет говорить об эффективной частоте работы оперативной памяти.

Данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по спаду тактового импульса, что и удваивает эффективную частоту работу памяти.

P.S. Частота оперативной памяти складывается из коэффициента умножения (множителя) на частоту системной шины.

Например, частота системной шины процессора 200 МГц (какой ни будь Pentium 4), а множитель=2, то результирующая частота памяти будет 400 МГц (800 МГц эффективная).

Это значит, что для разгона оперативной памяти, нужно разогнать процессор по шине (либо выбрать нужный множитель памяти).

Для новых платформ (LGA 1151 и так далее) всё несколько проще, доступен расширенный список множителей.

P.S. Все манипуляции по частотам, таймингам и напряжениям производятся в BIOS (UEFI) материнской платы.

Тайминги:

Модули памяти, работающие на одной и той же частоте, но имеющие разные тайминги в тоге могут иметь разную итоговую скорость работы.

Тайминги указывают на количество тактовых импульсов, для выполнения микросхемой памяти той или иной операции. Например, поиска определённой ячейки и записи в неё информации.

Сама же тактовая частота определяет с какой скоростью в Мегабайтах в секунду будут идти операции чтения/записи, когда чип уже готов выполнить команду.

Тайминги обозначаются цифрами, например, 10-11-10-30.

DDR3 1866 МГц 9-9-9-10-28 будет быстрее чем DDR3 1866 МГц 10-11-10-30.

Если обратиться к базовой структуре ячейки памяти, то получится вот такая табличная структура.

Структура оперативной памяти

То есть структура строк и столбцов, по номеру которых можно обратиться к тому или иному байту памяти, для чтения или записи данных.

Что же конкретно обозначают цифры таймингов?

Обратимся к примеру, выше DDR3 1866 МГц 10-11-10-30.

Цифры по порядку:

10 – это CAS Latency (CL)

Одна из важнейших задержек (таймингов). От него в большей степени будет зависеть скорость работы оперативной памяти.

Чем меньше первая цифра из таймингов, тем она быстрее.

CL указывает на количество тактовых циклов, необходимых для выдачи запрашиваемых данных.

На рисунке ниже вы видите пример с CL=3 и CL=5.

Что такое тайминги CAS Latency (CL)

В результате память с CL=3 на 40% быстрее выдаёт запрашиваемые данные. Можно даже посчитать задержку в нс (наносекунда = 0,000000001 с).

Чтобы вычислить период тактового импульса для оперативной памяти DDR3 1866 МГц, нужно взять её реальную частоту (933 МГц) и воспользоваться формулой:

T = 1 / f

1/933 = 0,0010718113612004 секунды ≈ 1,07 нс.

1,07*10(CL) = 10,7 нс. Таким образом для CL10 оперативная память задержит выдачу данных на 10,7 наносекунды.

P.S. Если последующие данные располагаются по адресу следующему за текущем адресом, то данные не задерживаются на время CL, в выдаются сразу же за первыми.

11 – это RAS to CAS Delay (tRCD)

Сам процесс доступа к памяти сводится к активации строки, а затем столбца с нужными данными. Данный процесс имеет два опорных сигнала – RAS (Row Address Strobe) и CAS (Column Address Strobe).

Также величина этой задержки (tRCD) является числом тактов между включением команды «Активировать (Active и командой «Чтение» или «Запись».

Что такое тайминги RAS to CAS Delay (tRCD)

Чем меньше задержка между первым и вторым, тем быстрее происходит конечный процесс.

10 – это RAS Precharge (tRP)

После того как данные получены из памяти, нужно послать специальную команду Precharge, чтобы закрыть строку памяти из которой считывались данные и разрешить активацию другой строки с данными. tRP время между запуском команды Precharge и моментом, когда память может принять следующую команду «Active». Напомню, что команда «Active» запускает цикл чтения или записи данных.

Чем меньше эта задержка, тем быстрее запускается цикл чтения или записи данных, через команду «Active».

Что такое тайминги RAS Precharge (tRP)

P.S. Время которое проходит с момента запуска команды «Precharge», до получения данных процессором складывается из суммы tRP + tRCD + CL

30 – это Cycle Time (tRAS) Active to Precharge Delay.

Если в память уже поступила команда «Active» (и в конечном итоге процесс чтения или записи из конкретной строки и конкретной ячейки), то следующая команда «Precharge» (которая закрывает текущую строку памяти, для перехода к другой) будет послана, только через это количество тактов.

То есть это время, после которого память может приступить к записи или чтению данных из другой строки (когда предыдущая операция уже была завершена).

Есть ещё один параметр, который по умолчанию никогда не изменяется. Разве что при очень большом разгоне памяти, для большей стабильности её работы.

Command Rate (CR, либо CMD), по умолчанию имеет значение 1T – один такт, второе значение 2T – два такта.

Command Rate (CR) оперативной памяти

Это отрезок времени между активацией конкретного чипа памяти на планке оперативной памяти. Для большей стабильности при высоком разгоне, часто выставляется 2T, что несколько снижает общую производительность. Особенно если плашек памяти много, как и чипов на них.

Читать еще:  Как узнать сколько мегагерц в оперативной памяти?

В этой статье я постарался объяснить всё более-менее доступно. Если, что, то всегда можно перечитать заново:)

Если вам понравился видео ролик и статья, то поделитесь ими с друзьями в социальных сетях.

Чем больше у меня читателей и зрителей, тем больше мотивации создавать новый и интересный контент:)

Также не забывайте вступать в группу Вконтакте и подписываться на YouTube канал.

YouTube канал Обзоры гаджетов

До встречи в следующих публикациях и роликах. Пока пока:)

Тайминги оперативной памяти

Приветствую, дорогие читатели! Сегодня мы с вами будем разбираться что значат тайминги в оперативной памяти и на что влияет этот параметр. Действительно, вдруг под этим умным словом нам пытаются втюхать очередную пустышку – например, как мегапиксели в камере мобильного телефона без вменяемой оптики?

Немного матчасти

Чтобы разобраться с таймингами – что это такое и для чего они нужны, следует слегка немного углубиться в механизм работы оперативки. Упрощенная схема выглядит следующим образом: ячейки ОЗУ устроены по принципу двухмерных матриц, доступ к которым происходит с указанием столбца и строки.

Ячейки памяти – по сути, конденсаторы, которые могут быть заряженными или разряженными, записывая таким образом единицу или ноль (я думаю, все уже давно в курсе, что любое вычислительное устройство работает с двоичным кодом).

Благодаря изменению напряжения с высокого на низкое посылается импульс доступа к строке (RAS) или столбцу (CAS). Синхронизированные с тактовым импульсом сигналы сначала подаются на строку, затем на столбец. При записи информации подается дополнительный импульс допуска (WE). Производительность памяти напрямую зависит от количества данных, передаваемых за каждый такт.

При этом есть одно НО: данные передаются не мгновенно, а с некоторой задержкой, которую еще называют латентностью. А мгновенно, как известно, ничего не передается – даже фотоны света имеют конечную скорость. Что говорить об электронах, пытающихся пробиться сквозь слои кремния?

Что означают тайминги

Итак, таймингом или латентностью называют величину задержки от поступления до исполнения команды. Их, а также всяких подтаймингов, существует несколько десятков видов, однако с практической стороны они интересны разве что инженерам и прочим большим специалистам по аппаратной части.Для обычного юзера важны четыре вида тайминга, которые обычно указываются при маркировке оперативки:

  • tRCD – задержка между импульсами RAS и CAS;
  • tCL – задержка от подачи команды о чтении или записи до импульса CAS;
  • tRP – задержка от обработки строки до перехода к следующей;
  • tRAS – задержка между активацией строки и началом обработки.

Некоторые производители также указывают Command rate – задержка между выбором конкретного чипа на модуле памяти и активацией строки.

Маркировка

Мерой тайминга является такт шины памяти. По сути, эти цифры позволяют в общих чертах оценить производительность планки оперативки еще до ее покупки.

Обычно тайминги указываются на шильдике наряду с типом памяти, частотой и прочими характеристиками. Для удобства записываются они в виде набора цифр через дефис в следующем порядке: tRCD- tCL- tRP- tRAS. Например, так: 7–7‑7–18.

Однако эту информацию указывают не все производители, поэтому существует вероятность, что, разобрав компьютер и вытащив модуль памяти, требуемых данных вы не найдете. Как узнать интересующие параметры? В этом случае на помощь придут программы, позволяющие получить полную информацию о железе – например, Speccy или CPU‑Z.

И заметьте, в описаниях товаров интернет-магазинов часто информация о таймингах не приводится.

Поэтому, если вы решили заморочиться по харду и подобрать дополнительную планку оперативки с абсолютно идентичными таймингами, чтобы активировать двухканальный режим оперативной памяти (зачем вам это нужно, читайте здесь), скорее всего придется отправиться в компьютерный магазин и морочить голову продавцу (или найти инфу на маркировке самостоятельно).

Настройка таймингов

Каждая планка оперативки снабжена чипом SPD, в котором хранится информация о рекомендуемых значениях таймингов применительно к частотам системной шины. Обычно компьютер при автоматических настройках устанавливает оптимальное значение латентности, благодаря которому оперативка покажет лучшую производительность.

Переназначить тайминги можно в БИОСе. Это – одна из любимых забав оверклокеров и прочих компьютерных колдунов, которые при помощи всяких хитрых настроек могут существенно увеличить производительность любого железа. Если вы не знаете, какие тайминги ставить, лучше ничего не трогайте, выбрав автоматическую настройку.

Несколько рекомендаций

Естественно, многих при покупке оперативной памяти интересует вопрос, что будет если у разных модулей памяти разные тайминги. По сути, ничего страшного не произойдет – вы просто не сможете запустить оперативку в двухканальном режиме.

Известно о случаях полной несовместимости модулей памяти, совместное использование которых провоцирует появление «синего экрана смерти», однако здесь кроме латентности следует учитывать еще множество дополнительных параметров.

Отправляясь за новой планкой памяти, вы можете продолжать сомневаться, какие тайминги лучше. Естественно, те, которые ниже. Однако разница в цифрах латентности находит отражение в разнице в цифрах на ценнике – при прочих равных параметрах модуль с меньшими таймингами будет стоять дороже.

И если вы читали мои предыдущие публикации, то вероятно еще помните, что я всяко негодую по поводу ископаемой DDR3 и агитирую всех при сборке компа ориентироваться на прогрессивный стандарт DDR4.

Еще на эту тему для вас полезно будет ознакомиться со статьями о влиянии оперативной памяти на производительность в играх и как соотносятся частота процессора и частота оперативной памяти. Для глубокого погружения, так сказать. Чтобы знать вообще все.

На этом, дорогие друзья, я говорю вам “До завтра”. Спасибо за внимание, подписку на новости и расшаривание этой публикации в социальных сетях.

Разновидности таймингов оперативной памяти

Если вам когда-либо приходилось интересоваться параметрами работы такой важной системы компьютера, как оперативная память, то вам наверняка, не раз встречался такой термин, как тайминги оперативной памяти. Что же он обозначает, и в чем заключается важность этого параметра? Попытаемся разобраться в данном вопросе.

Что представляют собой тайминги ОЗУ

Основными параметрами оперативной памяти, как известно, являются технология ее работы (например, DDR 1, 2 или 3), ее объем, а также тактовая частота. Но помимо этих параметров довольно важным, хотя и не всегда учитываемым параметром являются характеристики латентности памяти или так называемые тайминги. Тайминги оперативной памяти определяются количеством времени, которое требуется микросхемам ОЗУ, чтобы выполнить определенные этапы операций чтения и записи в ячейку памяти и измеряются в тактах системной шины. Таким образом, чем меньше будут значения таймингов модуля памяти, тем меньше модуль будет тратить времени на рутинные операции, тем большее быстродействие он будет иметь и, следовательно, тем лучше будут его рабочие параметры. Тайминги во многом влияют на производительность работы модуля ОЗУ, хотя и не так сильно, как тактовая частота.

Читать еще:  100 процентная загрузка диска Windows 10

Разновидности таймингов

К числу основных относятся:

  • CAS Latency (CL) – Латентность CAS.
  • RAS to CAS Delay (TRCD) – Задержка RAS to CAS
  • RAS Precharge (TRP) – Время зарядки RAS

Аббревиатура CAS обозначает Column Address Strobe (строб-сигнал адреса колонки), а RAS — Row Address Strobe (строб-сигнал адреса строки).

Часто, хотя и не всегда, производители микросхем ОЗУ используют четвертый и пятый тайминги. Ими являются Row Active Time (TRAS), обычно приблизительно равный сумме второго тайминга (TRCD) и квадрата тайминга CL, а также Command rate.

Все тайминги обычно указываются на маркировке микросхемы памяти в следующем порядке: CL-TRCD-TRP-TRAS. Например, обозначение 5-6-6-18 свидетельствует о том, что у микросхемы памяти значение CAS Latency равно 5 тактам, RAS to CAS Delay и RAS Precharge равны 6 тактам, значение Row Active Time – 18 тактам.

Тайминг CAS Latency является одним из самых важных таймингов модуля оперативной памяти. Он определяет время, которое требуется модулю памяти, чтобы выбрать необходимый столбец в строке памяти после поступления запроса от процессора на чтение ячейки.

RAS to CAS Delay (TRCD)

Этот тайминг определяет число тактов, которое проходит между снятием сигнала RAS, означающего выбор определенной строки памяти и подачей сигнала CAS, при помощи которого осуществляется выбор определенного столбца (ячейки) в строке памяти.

Этот параметр задает количество времени в тактах, которое проходит между сигналом на предварительную зарядку Precharge и открытием доступа к следующей строке данных.

Это тайминг определяет время, в течение которого является активной одна строка модуля памяти. Также в некоторых источниках он может называться SDRAM RAS Pulse Width, RAS Active Time, Row Precharge Delay или Active Precharge Delay.

Иногда для характеристики модуля памяти также используется тайминг Command Rate. Он определяет общую задержку при обмене командами между контроллером памяти и модулем ОЗУ. Обычно равен всего 1-2 тактам.

Также для определения параметров работы ОЗУ иногда используются вспомогательные тайминги оперативной памяти, такие, как RAS to RAS Delay, Write Recovery Time, Row Cycle Time, Write To Read Delay и некоторые другие.

Настройка таймингов средствами BIOS

В большинстве случаев BIOS устанавливает тайминги автоматически. Как правило, вся необходимая информация о таймингах содержится в специальной микросхеме SPD, которая присутствует в любом модуле памяти. Однако при необходимости значения таймингов можно устанавливать и вручную – BIOS большинства материнских плат предоставляет для этого широкие возможности. Обычно для управления таймингами используется опция DRAM Timings, в которой пользователь может установить значения основных таймингов — CAS Latency, RAS to CAS Delay, RAS Precharge и Row Active Time, а также ряда дополнительных. Кроме того, пользователь может оставить значения, используемые BIOS по умолчанию, выбрав вариант Auto.

Пример окна настройки таймингов BIOS

Почему возникает необходимость в самостоятельной установке таймингов? Это может потребоваться в разных случаях, например в ходе мероприятий по разгону оперативной памяти. Как правило, установка меньших значений таймингов позволяет увеличить быстродействие оперативной памяти. Однако в ряде случаев бывает полезной и установка больших значений таймингов по сравнению с номиналом – это позволяет улучшить стабильность работы памяти. Если вы затрудняетесь с установкой данных параметров и не знаете, какие величины таймингов лучше всего установить, то следует довериться значениям BIOS по умолчанию.

Заключение

Тайминги представляют собой числовые параметры, отражающие задержки выполнения операций в микросхеме памяти, обусловленные спецификой работы модулей ОЗУ. Они относятся к числу важных характеристик оперативной памяти, от которых во многом зависит производительность ОЗУ. При выборе модулей памяти следует руководствоваться следующим правилом – чем меньше будет значение таймингов для памяти, работающей по одной и той же технологии (DDR 1, 2 или 3), тем лучше будут скоростные параметры модуля. Номинальные значения таймингов для любых модулей ОЗУ определяются производителем модулей и хранятся в чипе SPD. Тем не менее, в ряде случаев пользователи могут менять значение стандартных таймингов при помощи средств BIOS.

Как тайминги памяти влияют на производительность?

Тайминги оперативной памяти: что это такое, и как они влияют на производительность Windows?

Пользователи, которые собственноручно стараются улучшить производительность компьютера, прекрасно понимают, что принцип “чем больше, тем лучше” для компьютерных составляющих работает не всегда. Для некоторых из них вводятся дополнительные характеристики, которые влияют на качество работы системы не меньше, чем объём. И для многих устройств это понятие скорости. Причём этот параметр влияет на производительность почти всех устройств. Здесь вариантов тоже немного: чем быстрее, получается, тем лучше. Но давайте проясним, как конкретно понятие скоростных характеристик в оперативной памяти влияет на производительность Windows.

Скорость модуля оперативной памяти – это основной показатель передачи данных. Чем больше заявленное число, тем быстрее компьютер будет “закидывать в топку” объёмов оперативной памяти сами данные и “изымать” их оттуда. При этом разница в объёмах самой памяти может свестись на нет.

Скорость и объём: что лучше?

Представьте себе ситуацию с двумя железнодорожными составами: первый огромный, но медленный со старыми портальными кранами, которые неторопливо загружают и выгружают груз. И второй: компактный, но быстрый с современными быстрыми кранами, которые благодаря скорости выполняют работу по загрузке и доставке быстрее в разы. Первая компания рекламирует свои объёмы, недоговаривая, что груз придётся ждать очень долго. А вторая при меньших объёмах, однако, успеет обработать груза в разы больше. Многое, конечно, зависит и от качества самой дороги, и расторопности машиниста. Но, как вы поняли, совокупность всех факторов и определяет качество доставки груза. А с планками оперативной памяти в слотах материнской платы ситуация аналогична?

Помятуя о приведённом примере, при выборе планок оперативной памяти мы сталкиваемся с номенклатурным выбором. Выбирая планку где-нибудь в интернет-магазине, мы ищем аббревиатуру DDR, но вполне вероятно, что мы можем столкнуться и со старыми добрыми стандартами PC2, PC3 и PC4, что всё ещё в ходу. Так, нередко за общепринятыми стандартами типа DDR3 1600 RAM можно увидеть характеристику PC3 12800, рядом с DDR4 2400 RAM нередко стоит PC4 19200 и т.д. Это и есть те данные, которые помогут объяснить как быстро будет доставлен наш груз.

Читаем характеристики памяти: сейчас всё сами поймёте

Пользователи, умеющие оперировать числами в восьмеричной системе, увязывают такие понятия быстро. Да, здесь речь о тех самых выражениях в битах/байтах:

Читать еще:  Диагностика оперативной памяти Windows 10

Помня это простенькое уравнение, можно легко посчитать, что DDR3 1600 означает скорость PC3 12800 бит/сек. Аналогично этому DDR4 2400 означает PC4 со скоростью 19200 бит/сек. Но если со скоростью передачи всё ясно, то что же такое тайминги? И почему два, казалось бы, одинаковых по частоте модуля из-за разницы в таймингах могут показывать в специальных программах разные уровни производительности?

Характеристики таймингов должны быть представлены в числе прочих для планок RAM счетверёнными через дефис числами (8-8-8-24, 9-9-9-24 и т.д). Эти цифры обозначают специфичный промежуток времени, которое требуется модулю RAM для доступа к битам данных сквозь таблицы массивов памяти. Для упрощения понятия в предыдущем предложении и ввели термин “задержка”:

Задержка – это понятие, которое характеризует то, как быстро модуль получает доступ к “самому себе” (да простят меня технари за такую вольную интерпретацию). Т. е. как быстро байты перемещаются внутри чипов планки. И вот здесь действует обратный принцип: чем меньше числа, тем лучше. Меньшая задержка означает большую скорость доступа, а значит данные быстрее достигнут процессора. Тайминги “измеряют” время задержки (период ожиданияCL) чипа памяти, пока тот обрабатывает какой-то процесс. А число в составе нескольких дефисов означает сколько временных циклов этот модуль памяти “притормозит” информацию или данные, которую сейчас ждёт процессор.

И какое это значение имеет для моего компьютера?

Представьте себе, вы после давненько совершённой покупки ноутбука решили добавить ещё одну планку оперативной памяти к уже имеющейся. Среди всего прочего, ориентируясь по наклеенному лейблу или на основании программ-бенчмарков можно установить, что по характеристикам таймингов модуль попадает под категорию CL-9 (9-9-9-24):

То есть данный модуль доставит до ЦПУ информацию с задержкой 9 условных циклов: не самый быстрый, но и не самый плохой вариант. Таким образом, нет смысла зацикливаться на приобретении планки с более низкими показателями задержки (и, теоретически, более высокими характеристиками производительности). Например, как вы уже догадались, 4-4-4-8, 5-5-5-15 и 7-7-7-21, у которых количество циклов равно соответственно 4, 5 и 7.

первый модуль опережает второй почти на треть цикла

Как вы знаете по статье “Как выбрать оперативную память?“, параметры таймингов включают ещё одни важные значения:

  • CLCAS Latency – время, затрачиваемое на цикл “модуль получил командумодуль начал отвечать“. Именно этот условный период уходит на ответ процессору от модуля/модулей
  • tRCD – задержка RAS к CAS – время, затрачиваемое на активацию строчки (RAS) и столбца (CAS) – именно там данные в матрице и сохраняются (каждый модуль памяти организован по типу матрицы)
  • tRP – заполнение (Зарядка) RAS – время, затрачиваемое на прекращение доступа к одной строчке данных и начало доступа к следующей
  • tRAS – означает как долго придётся самой памяти ждать очередного доступа к самой себе
  • CMDCommand Rate – время, затрачиваемое на цикл “чип активированпервая команда получена (или чип готов к приёму команды)”. Иногда этот параметр опускается: он всегда составляет один или два цикла ( или ).

“Участие” некоторых из этих параметров в принципе подсчёта скорости работы оперативной памяти, можно также выразить в следующих рисунках:

Кроме того, время задержки до момента, когда планка начнёт отсылать данные, можно подсчитать самому. Здесь работает простая формула:

Время задержки (сек) = 1 / Частоту передачи (Гц)

Таким образом, из рисунка с CPUD можно высчитать, что модуль DDR 3, работающий с частотой 665-666 МГц (половина декларируемого производителем значения, т.е. 1333 МГц) будет выдавать примерно:

1 / 666 000 000 = 1,5 нсек (наносекунд)

периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных в рисунках. При таймингах CL-9 модуль будет выдавать “тормоза” периодом 1,5 х 9 = 13,5 нсек, при CL-7 : 1,5 х 7 = 10,5 нсек.

Что можно добавить к рисункам? Из них видно, что чем ниже цикл зарядки RAS, тем быстрее будет работать и сам модуль. Таким образом, общее время с момента подачи команды на “зарядку” ячеек модуля и фактическое получение модулем памяти данных, высчитывается по простой формуле (все эти показатели утилиты типа CPU-Z должны выдавать):

tRP + tRCD + CL

Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет ваша оперативная память работать.

Как можно повлиять на них или отрегулировать тайминги?

У пользователя, как правило, для этого возможностей не очень много. Если в BIOS специальной настройки для этого нет, система будет конфигурировать тайминги автоматически. Если таковые имеются, можно попробовать выставить тайминги вручную из предлагаемых значений. А выставив, следите за стабильностью. Я, признаюсь, не мастер оверклокинга и никогда не погружался в подобные эксперименты.

Тайминги и производительность системы: выбираем по объёму

Если у вас не группа промышленных серверов или куча виртуальных серверов – абсолютно никакого влияния тайминги не возымеют. Когда мы употребляем это понятие, речь идёт о единицах наносекун. Так что при стабильной работе ОС задержки памяти и их влияние на производительность, основательные, казалось бы, в относительном выражении, в абсолютных значениях ничтожны: человек изменения в скорости заметить просто не сможет физически. Программы-бенчмарки это безусловно заметят, однако, если вы однажды станете перед выбором приобрести ли 8 Гб DDR4 на скорости 3200 или 16 Гб DDR4 со скоростью 2400, даже не сомневайтесь с выбором второго варианта. Выбор в пользу объёма, нежели скорости, у пользователя с пользовательской ОС обозначен всегда чётко. А взяв пару уроков оверклокинга по работе и настройке таймингов для RAM, можно после уже добиться улучшения производительности.

Так что же, на тайминги наплевать?

Практически да. Однако здесь есть несколько моментов, которые вы наверняка уже успели схватить сами. В сборке, где используется несколько процессоров и дискретная видеокарта, обладающая собственным чипом памяти, тайминги RAM не имеют никакого значения. Ситуация с интегрированными (встроенными) видеокартами немного меняется, и некоторые очень уж продвинутые пользователи чувствуют задержки в играх (насколько эти видеокарты вообще позволяют играть). Это и понятно: когда вся вычислительная мощь ложится на процессор и небольшой (скорее всего) объём оперативки, любая нагрузка сказывается. Но, опять же, опираясь на чужие исследования, могу передать их результаты вам. В среднем потеря производительности в скорости именитыми бенчмарками в различных тестах с уменьшением или увеличением таймингов в сборках с интегрированными или дискретными картами колеблется в районе 5%. Считайте, что это устоявшееся число. А много это или мало, вам судить.

Ссылка на основную публикацию
Adblock
detector