Сети для самых маленьких часть 7 zhitsoboy.ru

Сети для самых маленьких часть 7

GRE (протокол)

GRE (англ. Generic Routing Encapsulation — общая инкапсуляция маршрутов) — протокол туннелирования сетевых пакетов, разработанный компанией Cisco Systems. Его основное назначение — инкапсуляция пакетов сетевого уровня сетевой модели OSI в IP пакеты. Номер протокола в IP — 47.

Туннелирование подразумевает три протокола:

  • пассажир — инкапсулированный протокол (IP, CLNP, IPX, AppleTalk, DECnet Phase IV, XNS, VINES и Apollo)
  • протокол инкапсуляции (GRE)
  • транспортный протокол (IP)

Содержание

Пример применения

  • Используется в сочетании с PPTP для создания виртуальных частных сетей.
  • Применяется в технологии WDS для координации действий точек доступа и контроллера WDS.
  • Используется в технологиях мобильного IP

Пример стека протоколов, использующих GRE

Проблема DF-бита

В связи со служебным заголовком размер передаваемых данных внутри IP пакета через GRE-туннель уменьшается при сохранении общего размера пакета. В IP-пакете предусмотрено наличие бита DF (do not fragment), запрещающего разделение пакета на несколько при передаче через среду с меньшим размером MTU. В этом случае пакет с размером полезной области данных (англ. payload ), превышающим MTU IP пакета в GRE-туннеле, отбрасывается, что приводит к потерям пакетов при существенной нагрузке (проходят пакеты малого размера, такие как SYN пакеты TCP, ICMP сообщения (ping), но теряются пакеты с данными в TCP потоке (то есть соединение рвётся)). Для решения этой проблемы рекомендуется использовать path-mtu-discovery (определение TCP MSS, то есть максимального размера IP-пакетов на всём пути) при передаче данных через GRE-туннель, чтобы избежать избыточной фрагментации или потери больших пакетов. [1] [2]

Примечания

  1. О решении проблемы DF-бита и MTU на оборудовании cisco: [1]
  2. О проблеме фрагментации пакетов в GRE- и IPSEC-туннелях: [2]
  • Проблема DF бита и фрагментации в GRE туннелях
  • Создание VPN GRE туннеля в Linux
  • RFC 1701 — Generic Routing Encapsulation (GRE), октябрь 1994
  • RFC 1702 — Generic Routing Encapsulation over IPv4 networks, октябрь 1994
  • RFC 2784 — Generic Routing Encapsulation (GRE), июль 2000
  • RFC 2890 — Key and Sequence Number Extensions to GRE, сентябрь 2000

Wikimedia Foundation . 2010 .

Смотреть что такое «GRE (протокол)» в других словарях:

GRE — GRE: GRE (протокол) Generic Routing Encapsulation GRE (тест) Graduate Record Examination GRE (компания) японская компания … Википедия

Протокол обнаружения соседей — (англ. Neighbor Discovery Protocol, NDP ) протокол из набора Internet Protocol Suite, используемый совместно с IPv6. Он работает на уровне слоя Интернет Модели Интернета (RFC 1122) и ответственен за автонастройку адреса конечных точек сети,… … Википедия

протокол виртуального туннелирования — Черновой стандарт IETF, позволяющий различным протоколам канального и сетевого уровней туннельную передачу через сеть IP. VTP задает протокол обмена сообщениями для динамического создания и поддержки IP туннелей Протокол VTP использует механизм… … Справочник технического переводчика

PPP (сетевой протокол) — У этого термина существуют и другие значения, см. PPP. PPP (англ. Point to Point Protocol) двухточечный протокол канального уровня (Data Link) сетевой модели OSI. Обычно используется для установления прямой связи между двумя узлами сети,… … Википедия

RIP (сетевой протокол) — У этого термина существуют и другие значения, см. RIP. Протокол маршрутной информации (англ. Routing Information Protocol) один из самых простых протоколов маршрутизации. Применяется в небольших компьютерных сетях, позволяет маршрутизаторам … Википедия

RSVP (протокол) — У этого термина существуют и другие значения, см. RSVP. RSVP протокол резервирования сетевых ресурсов (Resource ReSerVation Protocol) (RFC 2205). С целью сообщения маршрутизаторам сети потребностей конечных узлов по качеству обслуживания… … Википедия

RTP — Протокол RTP (англ. Real time Transport Protocol) работает на транспортном уровне и используется при передаче трафика реального времени. Протокол был разработан Audio Video Transport Working Group в IETF и впервые опубликован в 1996 году как … Википедия

Rlogin — Протокол RLOGIN (англ. Remote LOGIN удалённый вход в систему) протокол прикладного уровня (7ой уровень модели OSI), часть стека TCP/IP. Позволяет пользователям UNIX подключаться к системам UNIX на других машинах и работать так же … Википедия

RUDP — Протокол RDP (англ. Reliable Data Protocol) разработан для обеспечения надежной передачи данных между пакетно ориентированными приложениями. Изначально он был разработан для приложений, реализующих удаленную загрузку данных и удаленное… … Википедия

Протоколы сетевого уровня — Протокол сетевого уровня (англ. Network layer) протокол 3 его уровня сетевой модели OSI, предназначается для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших… … Википедия

Каналы связи L2 и L3 VPN — Отличия физических и виртуальных каналов разного уровня

С доброй улыбкой теперь вспоминается, как человечество с тревогой ожидало в 2000 году конца света. Тогда этого не случилось, но зато произошло совсем другое событие и тоже очень значимое.

Исторически, в то время мир вошел в настоящую компьютерную революцию v. 3.0. – старт облачных технологий распределенного хранения и обработки данных . Причем, если предыдущей «второй революцией» был массовый переход к технологиям «клиент-сервер» в 80-х годах, то первой можно считать начало одновременной работы пользователей с использованием отдельных терминалов, подключенных к т.н. «мейнфреймам» (в 60-х прошлого столетия). Эти революционные перемены произошли мирно и незаметно для пользователей, но затронули весь мир бизнеса вместе с информационными технологиями.

При переносе IT-инфраструктуры на облачные платформы и удаленные ЦОД (центры обработки данных) ключевым вопросом сразу же становится организация надежных каналов связи от клиента к дата-центрам. В Сети нередко встречаются предложения провайдеров: «физическая выделенная линия, оптоволокно», «канал L2», «VPN» и так далее… Попробуем разобраться, что за этим стоит на практике.

Каналы связи – физические и виртуальные

1. Организацией «физической линии» или «канала второго уровня, L2» принято называть услугу предоставления провайдером выделенного кабеля (медного или оптоволоконного), либо радиоканала между офисами и теми площадками, где развернуто оборудование дата-центров. Заказывая эту услугу, на практике скорее всего вы получите в аренду выделенный оптоволоконный канал. Это решение привлекательно тем, что за надежную связь отвечает провайдер (а в случае повреждения кабеля самостоятельно восстанавливает работоспособность канала). Однако, в реальной жизни кабель на всем протяжении не бывает цельным – он состоит из множества соединенных (сваренных) между собой фрагментов, что несколько снижает его надежность. На пути прокладки оптоволоконного кабеля провайдеру приходится применять усилители, разветвители, а на оконечных точках – модемы.

Читать еще:  Объем SSD диска что это?

В маркетинговых материалах к уровню L2 (Data-Link) сетевой модели OSI или TCP/IP это решение относят условно – оно позволяет работать как бы на уровне коммутации фреймов Ethernet в LAN, не заботясь о многих проблемах маршрутизации пакетов на следующем, сетевом уровне IP. Есть, например, возможность продолжать использовать в клиентских виртуальных сетях свои, так называемые «частные», IP-адреса вместо зарегистрированных уникальных публичных адресов. Поскольку использовать частные IP-адреса в локальных сетях очень удобно, пользователям были выделены специальные диапазоны из основных классов адресации:

  • 10.0.0.0 – 10.255.255.255 в классе A (с маской 255.0.0.0 или /8 в альтернативном формате записи маски);
  • 100.64.0.0 – 100.127.255.255 в классе A (с маской 255.192.0.0 или /10);
  • 172.16.0.0 – 172.31.255.255 в классе B (с маской 255.240.0.0 или /12);
  • 192.168.0.0 – 192.168.255.255 в классе C (с маской 255.255.0.0 или /16).

Такие адреса выбираются пользователями самостоятельно для «внутреннего использования» и могут повторяться одновременно в тысячах клиентских сетей, поэтому пакеты данных с частными адресами в заголовке не маршрутизируются в Интернете – чтобы избежать путаницы. Для выхода в Интернет приходится применять NAT (или другое решение) на стороне клиента.

Примечание: NAT – Network Address Translation (механизм замены сетевых адресов транзитных пакетов в сетях TCP/IP, применяется для маршрутизации пакетов из локальной сети клиента в другие сети/Интернет и в обратном направлении – вовнутрь LAN клиента, к адресату).

У этого подхода (а мы говорим о выделенном канале) есть и очевидный недостаток – в случае переезда офиса клиента, могут быть серьезные сложности с подключением на новом месте и возможна потребность в смене провайдера.

Утверждение, что такой канал значительно безопаснее, лучше защищен от атак злоумышленников и ошибок низкоквалифицированного технического персонала при близком рассмотрении оказывается мифом. На практике проблемы безопасности чаще возникают (или создаются хакером умышленно) прямо на стороне клиента, при участии человеческого фактора.

2. Виртуальные каналы и построенные на них частные сети VPN (Virtual Private Network) распространены широко и позволяют решить большинство задач клиента.

Предоставление провайдером «L2 VPN» предполагает выбор из нескольких возможных услуг «второго уровня», L2:

VLAN – клиент получает виртуальную сеть между своими офисами, филиалами (в действительности, трафик клиента идет через активное оборудование провайдера, что ограничивает скорость);

Соединение «точка-точка» PWE3 (другими словами, «эмуляция сквозного псевдопровода» в сетях с коммутацией пакетов) позволяет передавать фреймы Ethernet между двумя узлами так, как если бы они были соединены кабелем напрямую. Для клиента в такой технологии существенно, что все переданные фреймы доставляются до удалённой точки без изменений. То же самое происходит и в обратном направлении. Это возможно благодаря тому, что фрейм клиента приходя на маршрутизатор провайдера далее инкапсулируется (добавляется) в блок данных вышестоящего уровня (пакет MPLS), а в конечной точке извлекается;

Примечание: PWE3 – Pseudo-Wire Emulation Edge to Edge (механизм, при котором с точки зрения пользователя, он получает выделенное соединение).

MPLS – MultiProtocol Label Switching (технология передачи данных, при которой пакетам присваиваются транспортные/сервисные метки и путь передачи пакетов данных в сетях определяется только на основании значения меток, независимо от среды передачи, используя любой протокол. Во время маршрутизации новые метки могут добавляться (при необходимости) либо удаляться, когда их функция завершилась. Содержимое пакетов при этом не анализируется и не изменяется).

VPLS – технология симуляции локальной сети с многоточечными соединениями. В этом случае сеть провайдера выглядит со стороны клиента подобной одному коммутатору, хранящему таблицу MAC-адресов сетевых устройств. Такой виртуальный «коммутатор» распределяет фрейм Ethernet пришедший из сети клиента, по назначению – для этого фрейм инкапсулируется в пакет MPLS, а после извлекается.

Примечание: VPLS – Virtual Private LAN Service (механизм, при котором с точки зрения пользователя, его разнесенные географически сети соединены виртуальными L2 соединениями).

MAC – Media Access Control (способ управления доступом к среде – уникальный 6-байтовый адрес-идентификатор сетевого устройства (или его интерфейсов) в сетях Ethernet).

3. В случае развертывания «L3 VPN» сеть провайдера в глазах клиента выглядит подобно одному маршрутизатору с несколькими интерфейсами. Поэтому, стык локальной сети клиента с сетью провайдера происходит на уровне L3 сетевой модели OSI или TCP/IP.

Публичные IP-адреса для точек стыка сетей могут определяться по согласованию с провайдером (принадлежать клиенту либо быть полученными от провайдера). IP-адреса настраиваются клиентом на своих маршрутизаторах с обеих сторон (частные – со стороны своей локальной сети, публичные – со стороны провайдера), дальнейшую маршрутизацию пакетов данных обеспечивает провайдер. Технически, для реализации такого решения используется MPLS (см. выше), а также технологии GRE и IPSec.

Примечание: GRE – Generic Routing Encapsulation (протокол тунеллирования, упаковки сетевых пакетов, который позволяет установить защищенное логическое соединение между двумя конечными точками – с помощью инкапсуляции протоколов на сетевом уровне L3).

IPSec – IP Security (набор протоколов защиты данных, которые передаются с помощью IP. Используется подтверждение подлинности, шифрование и проверка целостности пакетов).

Важно понимать, что современная сетевая инфраструктура построена так, что клиент видит только ту ее часть, которая определена договором. Выделенные ресурсы (виртуальные серверы, маршрутизаторы, хранилища оперативных данных и резервного копирования), а также работающие программы и содержимое памяти полностью изолированы от других пользователей. Несколько физических серверов могут согласованно и одновременно работать для одного клиента, с точки зрения которого они будут выглядеть одним мощным серверным пулом. И наоборот, на одном физическом сервере могут быть одновременно созданы множество виртуальных машин (каждая будет выглядеть для пользователя подобно отдельному компьютеру с операционной системой). Кроме стандартных, предлагаются индивидуальные решения, которые также соответствует принятым требованиям относительно безопасности обработки и хранения данных клиента.

Читать еще:  Учет трафика в локальной сети

При этом, конфигурация развернутой в облаке сети «уровня L3» позволяет масштабирование до практически неограниченных размеров (по такому принципу построен Интернет и крупные дата-центры). Протоколы динамической маршрутизации, например OSPF, и другие в облачных сетях L3, позволяют выбрать кратчайшие пути маршрутизации пакетов данных, отправлять пакеты одновременно несколькими путями для наилучшей загрузки и расширения пропускной способности каналов.

В то же время, есть возможность развернуть виртуальную сеть и на «уровне L2», что типично для небольших дата-центров и устаревших (либо узко-специфических) приложений клиента. В некоторых таких случаях, применяют даже технологию «L2 over L3», чтобы обеспечить совместимость сетей и работоспособность приложений.

Подведем итоги

На сегодняшний день задачи пользователя/клиента в большинстве случаев могут быть эффективно решены путём организации виртуальных частных сетей VPN c использованием технологий GRE и IPSec для безопасности.

Нет особого смысла противопоставлять L2 и L3, равно как нет смысла считать предложение канала L2 лучшим решением для построения надёжной коммуникации в своей сети, панацеей. Современные каналы связи и оборудование провайдеров позволяют пропускать громадное количество информации, а многие выделенные каналы, арендуемые пользователями, на самом деле – даже недогружены. Разумно использовать L2 только в особенных случаях, когда этого требует специфика задачи, учитывать ограничения возможности будущего расширения такой сети и проконсультироваться со специалистом. С другой стороны, виртуальные сети L3 VPN, при прочих равных условиях, более универсальны и просты в эксплуатации.

В этом обзоре кратко перечислены современные типовые решения, которые используют при переносе локальной IT-инфраструктуры в удаленные центры обработки данных. Каждое из них имеет своего потребителя, достоинства и недостатки, правильность выбора решения зависит от конкретной задачи.

В реальной жизни, оба уровня сетевой модели L2 и L3 работают вместе, каждый отвечает за свою задачу и противопоставляя их в рекламе, провайдеры откровенно лукавят.

Автор: Станислав Комухаев

Понравилась статья? Поделитесь ею в социальных сетях!

Как разделить сеть на подсети

Компьютеры большинства компаний и небольших фирм объединяют в единую сеть. Таким способом можно упростить обмен данными между узлами, разворачивать серверные приложения на мощном компьютере в сети, с которым взаимодействуют все подключенные устройства, и при этом обеспечить доступ в интернет. Но часто возникает необходимость объединять несколько устройств в отдельную сеть. Для этого следует знать, как разделить сеть на подсети, не меняя ее архитектуру.

Если вы читаете эту статью значить очень тесто связанны с администрированием локальных сетей и различный устройств. В связи с этом хочу порекомендовать вам несколько статей. Это настройка портов коммутаторов на примере Netgear. Настройка локальной сети CentOS. Настройка Wi Fi сетей ну и наверно настройка сети SIP телефонов.

Разделение сети на подсети самостоятельно

Поскольку большинство организаций не используют сети класса B, в рамках которых могут быть соединены между собой 65534 устройства, рассмотрим пример разделения сетей класса C. Наиболее распространенный вариант разбиения – с помощью маски.

Маска подсети — это цифровой шаблон, с помощью которого можно определить принадлежность устройства, обладающего уникальным адресом (IP), к той или иной подсети. Данный шаблон может быть представлен в двух видах: в десятичном и двоичном видах. Но последний на практике не используют, однако общее число единиц в записи суммируют и указывают через дробь в конце десятичной записи.

Например, 192.168.109.0/32, где число 32 характеризует сумму единиц в двоичной записи.

Предположим, существует сеть, в состав которой входит некоторое количество компьютеров, 3 свитча (коммутатора) и 3 маршрутизатора.

Провайдером была выделена сеть 192.168.0.0/24.

Разделим ее на 6 подсетей, при этом число устройств в каждой будет различным: 100, 50, 20, 2, 2, 2. Деление начинают с участка, к которому подключено наибольшее число устройств. Как видно, короткая запись маски – 24, что означает, что ее можно представить в таком виде: 255.255.255.0.

Чтобы разбить сеть на 2 подсети, необходимо сменить маску с «24» на «25» и применить ее к сети. В созданных подсетях 192.168.0.0/25 и 192.168.0.128/25 для IP узлов выделено 7 бит. Число доступных адресов можно рассчитать следующим способом: 2^7-2 = 126, что больше 100.

Теперь разделим подсеть 192.168.0.128/25 на 2 подсети, для чего используем маску 26. Число доступных адресов – 2^6-2 = 62, поскольку теперь для адресов устройств выделено 6 бит. В итоге получили 2 подсети: 192.168.0.128/26 и 192.168.0.192/26.

Подобным способом используем маску 27 для очередного деления на 2 подсети. Число устройств – 2^5-2 = 30, что больше 20. Получаем подсети 192.168.0.192/27 и 192.168.0.224/27.

Для создания 3 подсетей с подключенными по 2 устройства к каждой, из общего IP-адреса достаточно выделить всего 2 бита под адреса. Общее число бит в IP-адресе – 32. Получаем маску: 32-2=30. Применяем ее для сети 192.168.0.224, получаем 3 новых подсети: 192.168.0.224/30, 192.168.0.228/30, 192.168.0.232/30.

Таким способом сеть была поделена на 6 подсетей. Однако можно значительно упростить задачу, воспользовавшись одним из онлайн-сервисов.

Как разделить сеть на подсети онлайн VLSM Calculator

Данный онлайн-сервис позволяет разделить сеть на требуемое число подсетей с использованием сетевой маски. На странице содержится форма, с несколькими полями. В первом требуется ввести адрес исходной сети, указав через «/» биты маски. Чтобы изменить количество подсетей, необходимо найти на форме поле с соответствующим названием и ввести требуемое значение, зафиксировать его нажатием на «Изменить». Форма примет вид с определенным числом подсетей, которые характеризуются буквенным обозначением («Название») и числом устройств («Размер»). Необходимо заполнить поля «Размер» в зависимости от требуемого числа устройств в подсетях и нажать кнопку «Отправить».

Читать еще:  Непрерывный сигнал БИОСа при включении

Разделить сеть на подсети онлайн — http://www.vlsm-calc.net

В результате будет представлена таблица с адресами подсетей, диапазонами выделенных адресов, масками, выраженными в десятичном и двоичном видах, именами подсетей и выделенными размерами (числом доступных адресов для устройств). Также пользователю будет предоставлена информация об эффективности использования пространства адресов, выраженной в процентах.

Администраторы часто используют деление сетей с целью упрощения взаимодействия с устройствами, подключенными к ней. Представленный способ расчета не является сложным, но можно значительно сэкономить время, воспользовавшись онлайн-сервисом.

Cisco ответы на главы и экзамены.

8 March 2014

Сети для самых маленьких. Часть нулевая. Планирование

Это первая статья из серии «Сети для самых маленьких». Мы с товарищем thegluck долго думали с чего начать: маршрутизация, VLAN’ы, настройка оборудования.
В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум читали о эталонной модели OSI (то же на англ. ), о стеке протоколов TCP/IP ( англ. ), знаете о типах существующих VLAN’ов (эту статью я настоятельно рекомендую к прочтению), о наиболее популярном сейчас port-based VLAN и о IP адресах ( более подробно ). Мы понимаем, что для новичков «OSI» и «TCP/IP» — это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Следует несколько конкретизировать ситуацию.

  1. В данный момент у компании есть два офиса: 200 квадратов на Арбате под рабочие места и серверную. Там представлены несколько провайдеров. Другой на Рублёвке.
  2. Есть четыре группы пользователей: бухгалтерия (Б), финансово-экономический отдел (ФЭО), производственно-технический отдел (ПТО), другие пользователи (Д). А так же есть сервера (С), которые вынесены в отдельную группу. Все группы разграничены и не имеют прямого доступа друг к другу.
  3. Пользователи групп С, Б и ФЭО будут только в офисе на Арбате, ПТО и Д будут в обоих офисах.

Прикинув количество пользователей, необходимые интерфейсы, каналы связи, вы готовите схему сети и IP-план.
При проектировании сети следует стараться придерживаться иерархической модели сети , которая имеет много достоинств по сравнению с “плоской сетью”:

  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость засчет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.

Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение — быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.
Составим приблизительную схему:

На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города ( msk ) — географическое расположение (улица, здание) ( arbat ) — роль устройства в сети + порядковый номер.
Соответственно их ролям и месту расположения выбираем hostname :
Маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз)
Коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch)
Коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch)

Документация сети

Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.
Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:
Схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (Физический, канальный, сетевой)
План IP-адресации = IP-план.
Список VLAN
Подписи (description) интерфейсов
• Список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAMNVRAM, список интерфейсов)
• Метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах
• Единый регламент, определяющий все вышеприведённые параметры и другие.

Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:

На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.

Ссылка на основную публикацию
Adblock
detector