Как написать нейронную сеть на python? zhitsoboy.ru

Как написать нейронную сеть на python?

Простейшие нейронные сети на Python в Visual Studio (Python neural networks in Visual Studio)

Из статьи вы узнаете, как написать простую нейросеть на Python в среде Visual Studio (VS). Для более глубокого понимания проблематики приводятся примеры различных версий кода — от простого из 7 строк до более профессионального.

Любая искусственная нейронная сеть состоит из слоёв. Первый слой — входной, последний — выходной. Любой слой, расположенный между входным и выходным — скрытый. Количество слоев и нейронов в них может быть разное.

Во входном слое расположены нейроны, которые принимают сигнал, но не обрабатывают его.

Стрелочки, передающие сигналы — синапсы. Они умножают входной сигнал xi на синаптический вес wi. В каждом из нейронов определяется сумма значений входящих сигналов

Результат d приводится к диапазону [0 … 1] при помощи функции активации y=S(d) (нелинейной сигмоидальной функции).

alpha – параметр наклона сигмоидальной функции S(d). Чем больше этот параметр, тем круче функция (угол касательной в точке перегиба функции будет больше).

Обучить нейронную сеть — значит, сообщить ей, чего мы от нее добиваемся. Допустим, мы хотим, чтобы для нашей сети при сигналах на входе 0 и 1 на выходе была 1.

В общем виде алгоритм обучения с учителем будет выглядеть следующим образом:

  1. Инициализировать синаптические веса маленькими случайными значениями.
  2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
  3. Вычислить выход сети.
  4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
  5. Подкорректировать веса сети для минимизации ошибки.
  6. Повторять шаги с 2 по 5 для каждой пары обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Конкретный вид математических операций, выполняемых на этапе 5, определяет разновидность алгоритма обучения. Например, для однослойных сетей применяют простейший алгоритм, основанный на т. н. дельта-правиле (см. Обучение персептрона. Дельта-правило) , для сетей с любым количеством слоев широко используется Алгоритм обратного распространения ошибки.

Создание нейронной сети в Visual Studio (версия кода 1)

Запускаем редактор VS и создаем проект (File>New>Project>Python>Python Application)

Вставляем в исходный файл (.py) код:

В приложении обучается сеть с 2-я входами, с 3-я нейронами на скрытом слое и одним нейроном на выходе.

Обучающая выборка для обучения из 3-х примеров:

  • На входе сигналы: [3,5],[5,1],[10,2];
  • На выходе сигналы: 75,82,93;

Запускаем приложение, получаем после обучения сигналы выходе, близкие к ожидаемым (заданным):

Если отладчик подчеркивает 1-й рядок кода, значит, у Вас еще не инсталлирован пакет (package) numpy. Его можно инсталлировать не выходя из проекта (Шаг 5. Установка пакетов в окружении Python). Для этого открываете контекстное меню в Solution Explore и выбираете в нем «Install Python Package»:

Откроется окно «Python Environments». В поисковом окошке набираете «numpy» и, затем, запускаете «Install numpy».

Откроется окно, в котором выбираете права администратора:

Инсталляция длится не более 5 минут.

Математическая разминка:

Какая цифра должна быть? Проверьте себя и поставьте эту задачу для нейронной сети.

Простая нейронная сеть (версия кода 2)

Постановка задачи. Обучить однослойную нейронную сеть с 3-х входами и с одним выходом на основе тренировочной выборки из 4-х примеров. После обучения системы определить результат на выходе для тестового примера.

Подробное описание приложения см. в первоисточнике Простая нейронная сеть в 9 строчек кода на Python

Вставляем в исходный файл следующий код:

Запускаем приложение, получаем следующий результат:

Усложняем приложение. Вставляем в исходный файл следующий код:

Запускаем приложение, получаем следующий результат:

Простая нейронная сеть (версия кода 3)

Ниже рассмотрены коды приложений для 2-х и 3-х уровневых нейронных сетей. Подробное описание обоих приложений и алгоритма к ним см. в первоисточнике Нейронная сеть в 11 строках Python (часть 1).

Код к 2-х уровневой нейронной сети:

Запускаем приложение, получаем следующий результат:

Код к 3-х уровневой нейронной сети:

Запускаем приложение, получаем следующий результат:

Как построить свою собственную нейронную сеть с нуля в Python

Опубликовано Шамаев Иван в 11.09.2019 11.09.2019

Руководство для начинающих, чтобы понять внутреннюю работу глубокого обучения

Beginner’s Guide of Deep Learning

Мотивация: как часть моего личного пути, чтобы получить лучшее понимание глубокого обучения, я решил построить нейронную сеть с нуля без библиотеки глубокого обучения, такой как TensorFlow. Я считаю, что понимание внутренней работы нейронной сети важно для любого начинающего специалиста по данным.

Эта статья содержит то, что я узнал, и, надеюсь, это будет полезно и для вас!

Что такое нейронная сеть?

В большинстве вводных текстов по нейронным сетям приводятся аналогии с мозгом при их описании. Не углубляясь в аналогии с мозгом, я считаю, что проще описать нейронные сети как математическую функцию, которая отображает заданный вход в желаемый результат.

Нейронные сети состоят из следующих компонентов

  • Входной слой , х
  • Произвольное количество скрытых слоев
  • Выходной слой , сечение
  • Набор весов и смещений между каждым слоем, W и B
  • Выбор функции активации для каждого скрытого слоя, σ . В этом уроке мы будем использовать функцию активации Sigmoid.

На диаграмме ниже показана архитектура двухслойной нейронной сети ( обратите внимание, что входной слой обычно исключается при подсчете количества слоев в нейронной сети )

Архитектура двухслойной нейронной сети

Создать класс нейросети в Python просто.

Обучение нейронной сети

Выход ŷ простой двухслойной нейронной сети:

Вы можете заметить, что в приведенном выше уравнении весовые коэффициенты W и смещения b являются единственными переменными, которые влияют на результат ŷ.

Естественно, правильные значения весов и смещений определяют силу прогнозов. Процесс тонкой настройки весов и смещений из входных данных известен как обучение нейронной сети.

Читать еще:  Как объединить компьютеры в сеть через Wifi?

Каждая итерация учебного процесса состоит из следующих шагов:

  • Расчет прогнозируемого выхода known , известный как прямаясвязь
  • Обновление весов и уклонов, известных как обратное распространение

Последовательный график ниже иллюстрирует процесс.

прогнозирование

Как мы видели на приведенном выше последовательном графике, прямая связь — это просто простое исчисление, и для базовой двухслойной нейронной сети результат работы нейронной сети:

Давайте добавим функцию обратной связи в наш код Python, чтобы сделать именно это. Обратите внимание, что для простоты мы приняли смещения равными 0.

Однако нам все еще нужен способ оценить «доброту» наших прогнозов (т. Е. Насколько далеки наши прогнозы)? Функция потерь позволяет нам делать именно это.

Функция потери

Есть много доступных функций потерь, и природа нашей проблемы должна диктовать наш выбор функции потерь. В этом уроке мы будем использовать простую ошибку суммы квадратов в качестве нашей функции потерь.

То есть ошибка суммы квадратов — это просто сумма разности между каждым прогнозируемым значением и фактическим значением. Разница возводится в квадрат, поэтому мы измеряем абсолютное значение разницы.

Наша цель в обучении — найти лучший набор весов и смещений, который минимизирует функцию потерь.

обратное распространение

Теперь, когда мы измерили ошибку нашего прогноза (потери), нам нужно найти способ распространить ошибку назад и обновить наши веса и отклонения.

Чтобы узнать соответствующую сумму, с помощью которой можно корректировать веса и смещения, нам необходимо знать производную функции потерь по весам и смещениям .

Напомним из исчисления, что производная функции — это просто наклон функции.

Алгоритм градиентного спуска

Если у нас есть производная, мы можем просто обновить веса и смещения, увеличивая / уменьшая ее (см. Диаграмму выше). Это известно как градиентный спуск .

Однако мы не можем напрямую рассчитать производную функции потерь по весам и смещениям, потому что уравнение функции потерь не содержит весов и смещений. Поэтому нам нужно цепное правило, чтобы помочь нам его вычислить.

Уф! Это было некрасиво, но оно позволяет нам получить то, что нам нужно — производную (наклон) функции потерь по отношению к весам, чтобы мы могли соответствующим образом корректировать веса.

Теперь, когда у нас это есть, давайте добавим функцию обратного распространения в наш код Python.

Для более глубокого понимания применения исчисления и правила цепочки в обратном распространении я настоятельно рекомендую этот урок от 3Blue1Brown.

Собираем все вместе

Теперь, когда у нас есть полный код Python для выполнения обратной связи и обратного распространения, давайте применим нашу нейронную сеть на примере и посмотрим, насколько хорошо она работает.

Наша нейронная сеть должна изучить идеальный набор весов для представления этой функции. Обратите внимание, что для нас не совсем просто вычислить вес только одним осмотром.

Давайте обучим нейронную сеть для 1500 итераций и посмотрим, что произойдет. Глядя на график потерь на итерацию ниже, мы ясно видим, что потери монотонно уменьшаются до минимума. Это согласуется с алгоритмом градиентного спуска, который мы обсуждали ранее.

Давайте посмотрим на окончательный прогноз (выход) из нейронной сети после 1500 итераций.

Мы сделали это! Наш алгоритм обратной связи и обратного распространения успешно обучил нейронную сеть, и прогнозы сошлись на истинных значениях.

Обратите внимание, что существует небольшая разница между прогнозами и фактическими значениями. Это желательно, поскольку это предотвращает переоснащение и позволяет нейронной сети лучше обобщать невидимые данные.

Что дальше?

К счастью для нас, наше путешествие не закончено. Еще многое предстоит узнать о нейронных сетях и глубоком обучении. Например:

  • Какую другую функцию активации мы можем использовать, кроме функции Sigmoid?
  • Использование скорости обучения при обучении нейронной сети
  • Использование сверток для задач классификации изображений

Я скоро напишу больше на эти темы, так что следите за мной на Medium и следите за ними!

Последние мысли

Я, конечно, многому научился писать свою собственную нейронную сеть с нуля.

Хотя библиотеки глубокого обучения, такие как TensorFlow и Keras, позволяют легко создавать глубокие сети без полного понимания внутренней работы нейронной сети, я считаю, что для начинающего ученого-исследователя полезно получить более глубокое понимание нейронных сетей.

Машинное зрение на Python. Обучаем нейросеть распознавать цифры

Содержание статьи

Для каждого примера я приведу код на Python 3.7. Ты можешь запустить его и посмотреть, как все это работает. Для запуска примеров потребуется библиотека Tensorflow. Установить ее можно командой pip install tensorflow-gpu , если видеокарта поддерживает CUDA, в противном случае используй команду pip install tensorflow . Вычисления с CUDA в несколько раз быстрее, так что, если твоя видеокарта их поддерживает, это сэкономит немало времени. И не забудь установить наборы данных для обучения сети командой pip install tensorflow-datasets .

Все приведенные в этой статье примеры работают полностью автономно. Это важно, потому что существуют различные онлайн-сервисы AI, например компании Amazon, которые берут оплату за каждый запрос. Создав и обучив собственную нейронную сеть с помощью Python и Tensorflow, ты сможешь использовать ее неограниченно и независимо от какого-либо провайдера.

Как работает нейронная сеть

Как работает один нейрон? Сигналы со входов (1) суммируются (2), причем каждый вход имеет свой «коэффициент передачи» — w . Затем к получившемуся результату применяется «функция активации» (3).

Модель нейрона

Типы этой функции различны, она может быть:

  • прямоугольной (на выходе 0 или 1);
  • линейной;
  • в виде сигмоиды.
Читать еще:  Как сменить экран загрузки Windows 7?

Еще в 1943 году Мак-Каллок и Питтс доказали, что сеть из нейронов может выполнять различные операции. Но сначала эту сеть нужно обучить — настроить коэффициенты w каждого нейрона так, чтобы сигнал передавался нужным нам способом. Запрограммировать нейронную сеть и обучить ее с нуля сложно, но, к счастью для нас, все необходимые библиотеки уже написаны. Благодаря компактности языка Python все действия можно запрограммировать в несколько строк кода.

Рассмотрим простейшую нейросеть и научим ее выполнять функцию XOR . Разумеется, вычисление XOR с помощью нейронной сети не имеет практического смысла. Но именно оно поможет нам понять базовые принципы обучения и использования нейросети и позволит по шагам проследить ее работу. С сетями большей размерности это было бы слишком сложно и громоздко.

Простейшая нейронная сеть

Сначала нужно подключить необходимые библиотеки, в нашем случае это tensorflow . Я также отключаю вывод отладочных сообщений и работу с GPU, они нам не пригодятся. Для работы с массивами нам понадобится библиотека numpy .

Теперь мы готовы создать нейросеть. Благодаря Tensorflow на это понадобится всего лишь четыре строчки кода.

Мы создали модель нейронной сети — класс Sequential — и добавили в нее два слоя: входной и выходной. Такая сеть называется «многослойный перцептрон» (multilayer perceptron), в общем виде она выглядит так.

Сеть multilayer perceptron

В нашем случае сеть имеет два входа (внешний слой), два нейрона во внутреннем слое и один выход.

Можно посмотреть, что у нас получилось:

Параметры сети

Обучение нейросети состоит в нахождении значений параметров этой сети.
Наша сеть имеет девять параметров. Чтобы обучить ее, нам понадобится исходный набор данных, в нашем случае это результаты работы функции XOR .

Функция fit запускает алгоритм обучения, которое у нас будет выполняться тысячу раз, на каждой итерации параметры сети будут корректироваться. Наша сеть небольшая, так что обучение пройдет быстро. После обучения сетью уже можно пользоваться:

Результат соответствует тому, чему сеть обучалась.

Network test:
XOR(0,0): [[0.00741202]]
XOR(0,1): [[0.99845064]]
XOR(1,0): [[0.9984376]]
XOR(1,1): [[0.00741202]]

Мы можем вывести все значения найденных коэффициентов на экран.

W1: [[ 2.8668058 -2.904025 ] [-2.871452 2.9036295]]
b1: [-0.00128211 -0.00191825]
W2: [[3.9633768] [3.9168582]]
b2: [-4.897212]

Внутренняя реализация функции model.predict_proba выглядит примерно так:

Рассмотрим ситуацию, когда на вход сети подали значения [0,1]:

L1 = X1W1 + b1 = [02.8668058 + 1-2.871452 + -0.0012821, 0-2.904025 + 1*2.9036295 + -0.00191825] = [-2.8727343 2.9017112]

Функция активации ReLu (rectified linear unit) — это просто замена отрицательных элементов нулем.

Теперь найденные значения попадают на второй слой.

L2 = X2W2 + b2 = 03.9633768 +2.9017112*3.9633768 + -4.897212 = 6.468379

Наконец, в качестве выхода используется функция Sigmoid , которая приводит значения к диапазону 0. 1:

Мы совершили обычные операции умножения и сложения матриц и получили ответ: XOR(0,1) = 1 .

С этим примером на Python советую поэкспериментировать самостоятельно. Например, ты можешь менять число нейронов во внутреннем слое. Два нейрона, как в нашем случае, — это самый минимум, чтобы сеть работала.

Но алгоритм обучения, который используется в Keras, не идеален: нейросети не всегда удается обучиться за 1000 итераций, и результаты не всегда верны. Так, Keras инициализирует начальные значения случайными величинами, и при каждом запуске результат может отличаться. Моя сеть с двумя нейронами успешно обучалась лишь в 20% случаев. Неправильная работа сети выглядит примерно так:

XOR(0,0): [[0.66549516]]
XOR(0,1): [[0.66549516]]
XOR(1,0): [[0.66549516]]
XOR(1,1): [[0.00174837]]

Но это не страшно. Если видишь, что нейронная сеть во время обучения не выдает правильных результатов, алгоритм обучения можно запустить еще раз. Правильно обученную сеть потом можно использовать без ограничений.

Можно сделать сеть поумнее: использовать четыре нейрона вместо двух, для этого достаточно заменить строчку кода model.add(Dense(2, input_dim=2, activation=’relu’)) на model.add(Dense(4, input_dim=2, activation=’relu’)) . Такая сеть обучается уже в 60% случаев, а сеть из шести нейронов обучается с первого раза с вероятностью 90%.

Все параметры нейронной сети полностью определяются коэффициентами. Обучив сеть, можно записать параметры сети на диск, а потом использовать уже готовую обученную сеть. Этим мы будем активно пользоваться.

Продолжение доступно только участникам

Вариант 1. Присоединись к сообществу «Xakep.ru», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score! Подробнее

Распознавание рукописного текста. Нейронные сети.Python

В этой статье мы напишем простую нейронную сеть(персептрон) для распознавания рукописного текса. Это скорей практикум по реализации конкретной сети, мы совсем поверхностно коснемся теории. План работы:

  • Немного теории.
  • Пишем сеть.
  • Обучение сети, обратное распространение ошибки, машинное обучение.
  • Итог.

Совсем без теории конечно не обойтись и начнем мы с нейрона.

Все нейронные сети состоят из нейронов. А если конкретней из математической модели работы настоящего нейрона. Суть этой модели в том что есть много входов ( X ) по которым поступают какие то данные ( на примет 1 или ). У каждого сигналавхода есть вес (сила сигнала W) . Все эти данные обрабатываются внутри нейрона, так называемая функция активации нейрона f(x) . И нейрон падает обработанные данные на выход.

Из этих кубиков собираются слои : входной, скрытый , выходной. Собственно на входной слой подаються сигналы, далее они передаться на скрытый слой ( их может быть и несколько) . В скрытом слое происходит сама работа всей сети. Ну и по аналоги со скрытого слоя данные поступают на выходной. На этих выходных данных и строиться результат работы. Классификация объектов , распознавание или вероятность чего то. Важно помнить, не одна нейронная сеть не дает 100% точности так же как и мозг человека.

Мы будем писать Персептрон, простая модель в который сигналы передаются с лева на право (от входного к выходному слою) и все нейроны соединены друг с другом. То есть каждый нейров входного слоя соединен выходами со всеми нейронами скрытого слоя и т.д.

Читать еще:  Почему системный блок шумно работает?

Первым делом нам надо задать число нейронов в входном,выходном и скрытом слое . Еще нужно задать коэффициент обучения (с какой скоростью будет обучаться сеть от 0 до 1) нам он потребуется позже.

Теперь создадим саму сеть. Мы создадим все связи между слоями, если точнее — силу этих связей. Для этого мы будем использовать матрицы ( двухмерные массивы) которые будут хранить эти связи. Вы же помните что каждый нейрон связен с каждым нейроном следующего слоя ( например если в скрытом слое 100 нейронов, то для каждого нейрона входного слоя будет иметься 1х100 связей и т.д.)

Numpy — это библиотека языка Python, добавляющее поддержку больших многомерных массивов и матриц, вместе с большой библиотекой высокоуровневых математических функций для операций с этими массивами.

numpy.random.rand() — создает массив заданной формы и заполняет его случайными значениями от 0 до 1.

Нейроны входного слоя просто передаю информацию поступившую на них( для них не используется функция активации) нейронам следующего слоя по связям. Если очень просто то это как устройство ввода или матрица в фотоаппарате. Далее мы эти данные умножаем на вес связи и они поступают в нейрон следующего слоя. Нейрон используя функцию активации обрабатывает эти данные. Мы будем использовать Сигмоиду. И передает дальше.

Сигмооида — это гладкая монотонная возрастающая нелинейная функция, имеющая форму буквы «S», которая часто применяется для «сглаживания» значений некоторой величины. Формула : f(x) = 1 / (1+e ** -x )

В нейронных сетях применяют не только эту функцию, а например : Гиперболический тангенс , Ступенчатая функция , Гауссова функция.

Теперь нам нужна функция которая принимает входные данные, все это считает и выдает выходные данные сети. В ней мы будем использовать умножение матриц. Это отличный вариант дял подсчета суммы сигналов для нейронов.

Тут очень важный момент, почему матрицы ? На этой картинке простоя модель

А теперь представим эти данные в виде матрицы :

T — означает транспонированная матрица, не буду вдаваться в математику. Вы можете посмотреть что это значит в интернете.

Машинное обучение.

У нас есть каркас. Но наша сеть глупа как только что родившийся ребенок. И теперь нам надо ее обучить распознавать рукописный текст. Первым делам для этого нужны входные данные( много ) а так же проверочные выходные данные с которыми мы будем сверяться в ходе обучения.

Мы возьмем готовую базу MNIST (сокращение от «Modified National Institute of Standards and Technology») — объёмная база данных образцов рукописного написания цифр. База данных является стандартом, предложенным Национальным институтом стандартов и технологий США с целью калибрации и сопоставления методов распознавания изображений с помощью машинного обучения в первую очередь на основе нейронных сетей. Качаем с нашего сайта.

Смысл обучения нейронной сети сводиться к коррекции W весов связей( силы сигнала) между нейронами. Первым делом мы вычисляем ошибку выходных данных : e1 = t1 — o1 где t1 проверочное значение для нейрона выходного слоя, o1 — фактическое значение. Что бы посчитать ошибку для нейронов скрытого слоя мы воспользуемся методом обратного распространения ошибки . Суть проста : Ошибка1 (первого нейрона скрытого слоя) = e1 (выходной) * w1.1 + e2(второй выходной нейрона) * w1.2(вес связи от него)

Формула для матриц

Ошибки нейронов мы посчитали, а на сколько же и как нам менять веса связей ? Не вдаваясь в подробности, будем использовать метод Градиентного спуска. То есть коррекция = lern_nodes * e выходного слой * сигмоида выходного слоя * (1 — сигмоида выходного слоя) * сигмоида скрытого слоя

Обучающие данные.

Нас с вами интересует два файл :

  • mnist_train.csv
  • mnist_test.csv

Данные предоставлены в удобной текстовой форме, разделенные запятой. Тренировочный набор содержит около 60.000 промаркированных образцов, тестовый поменьше — около 10.000 .

  • Первое значение это маркер от 0-9 , какая цифра изображена.
  • Далее следует пиксельный массив 28х28 . Всего 784 значения от 0 до 255.

Прежде чем использовать эти данные для обучения и проверки нейронной сети, нам нужно подготовить их для работы с функцией активации. Что бы данные оставались в оптимальном диапазоне для нее. Для нас будет оптимально значение от 0,01 до 1.00 . Почему не 0 ? Нулевое значение может помешать нам обновлять весовые коэффициенты .

Наша нейросеть будет классифицировать изображения по 10 признакам , цифра от 0 до 9 . Выходные значения опять же будут в рамках нашей функции активации, фактически сигмоида не может достичь 1 , по этому мы записываем 0.99 .

Немного все сумбурно получилось. Используя эту базу данных мы будем подавать на каждый входной нейрон одно значение пикселя картинки. То есть входной слой будет у нас матрица 28х28 (784 нейрона) . А выходной слой будет содержать 10 нейронов- классификаторов. Самый интерес вопрос : сколько нейронов должно быть в скрытом слое ? Если их будет мало, сеть будет не способна распознать цифры. Если очень много сеть просто запомнит обучающие данные(зазубрит) что скажется на точности распознания. Попробуем остановиться на 100 скрытых нейронах.

Все, дальше вы можете поиграться с числом нейронов скрытого слоя, с коэффициентом обучения, попробовать несколько раз обучать сеть на тех же данных, добавить еще один скрытый слой и т.д. В общем успехов.

Ссылка на основную публикацию
Adblock
detector